【www.donglinxiaofang.com--江苏省】
以下是小编收集整理的2023年江苏省高考数学真题试卷范文(精选3篇),仅供参考,希望能够帮助到大家。
【篇一】2023年江苏省高考数学真题试卷
任一x=A,x=B,记做AB
AB,BAA=B
AB={x|x=A,且x=B}
AB={x|x=A,或x=B}
Card(AB)=card(A)+card(B)—card(AB)
(1)命题
原命题若p则q
逆命题若q则p
否命题若p则q
逆否命题若q,则p
(2)AB,A是B成立的充分条件
BA,A是B成立的必要条件
AB,A是B成立的充要条件
1、集合元素具有
①确定性;
②互异性;
③无序性
2、集合表示方法
①列举法;
②描述法;
③韦恩图;
④数轴法
(3)集合的运算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性质
n元集合的字集数:2n
真子集数:2n—1;
非空真子集数:2n—2
【篇二】2023年江苏省高考数学真题试卷
选择填空题
1、易错点归纳:
九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2、答题方法:
选择题十大速解方法:
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题
专题一、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题二、圆锥曲线中的范围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的"范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
专题三、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
【篇三】2023年江苏省高考数学真题试卷
1、函数与导数
主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
2、平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些数学基础题或中档题。
3、数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
4、不等式
主要考查数学不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
5、概率和统计
这部分和我们的生活联系比较大,属数学应用题。
6、空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
7、解析几何
高考的难点,运算量大,一般含参数。
高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。