【www.donglinxiaofang.com--小升初】
以下是为大家整理的小升初英文版的奥数试题精选四篇,欢迎品鉴!
小升初英文版的奥数试题1
小升初奥数试题及答案
一年级
1.计算:211×555+445×789+555×789+211×445=______.
2.纽约时间是香港时间减13小时,你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通话,那么在香港你应____月____日____时给他打电话
三年级
1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?
2.移动一根火柴棍,使得算式成立。
四年级
1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?
2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?
五年级
1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?
2.将各位数字都不大于5的非0自然数,从小到大排列,第个数是多少?
六年级
1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?
2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?
二年级
1.找出图形变化的规律,并画出第四幅图。
解答:
分别按照顺时针方向移动,因此第四幅图是
解答:
2.计算:28+208+2008+8
解答:原式=(20+8)+(200+8)+(2000+8)+(20000+8)
=20+200+2000+20000+8+8+8+8
=22220+32=22252
三年级
1.一条马路长200米,在马路两侧每隔4米种一棵树,则一共要种多少棵树?
解答:200÷4+1=51(棵)51×2=102(棵)
2.移动一根火柴棍,使得算式成立。
解答:11+3=7+7
四年级
1.王刚、李强和小莉、小芳是两对夫妻,四人的年龄和是132岁。丈夫都比自己的妻子大5岁,李强比小芳大6岁。小莉多少岁?
解答:若妻子都增加5岁,那么四人的年龄和为132+5×2=142岁,因此两个丈夫的年龄和是142÷2=71岁。由条件可以知道,李强的妻子是小莉,王刚的`妻子是小芳。李强比小芳大6岁,王刚比小芳大5岁,所以李强比王刚大1岁,因此李强的年龄为(71+1)÷2=36岁,小莉是36-5=31岁。
2.第一个图形由4根火柴棍组成,第二个图形由12根火柴棍组成,第三个图形由24根火柴棍组成,依此类推,第100个图形由多少根火柴棍组成?
解答:横向与纵向的火柴棍根数一样。4=2×1×2,12=2×2×3,24=2×3×4,依此类推,第100个图形共有2×100×101=0根。
五年级
1.将15拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,那么积是多少?
解答:15=2+3+4+6,2×3×4×6=144
2.将各位数字都不大于5的非0自然数,从小到大排列,第2010个数是多少?
解答:实际就是将六进制的数从小到大排列。
将2010转化为六进制。(2010)10=(13150)6
第2010个数就是13150。
六年级
1.中午12时,校准A、B、C三钟。当天下午A钟6点时,B钟5点50分;B钟7点时,C钟7点20分。那么当晚C钟11点时,A钟是几点几分?
解答:A钟走6个小时(即360分钟)的同时,B钟走了5小时50分钟=350分钟,可知A与B的速度比为36:35。B钟走了7个小时(即420分钟)的同时,C钟走了7小时20分钟=440分钟,可知B与C的速度比为42:44=21:22。
现在C钟共走了11个小时(即660分钟),B钟应该走660÷22×21=630分钟,A钟应该走630÷35×36=648分钟=10小时48分钟,所以A钟应该是10点48分。
2.在16点16分0秒时,钟表盘上时针和分针的夹角是多少度?
解答:分针走一圈是60分钟,共走了360度,因此分针一分钟走360÷60=6度。时针60分钟只走一个刻度(即30度),一分钟走30÷60=0.5度。
16点整的时候,时针指向“4”的位置,分针指向“12”的位置,相差120度。16分钟里,分针追上时针16×(6-0.5)=88度,夹角还差120-88=32度。
小升初英文版的奥数试题2
关于小升初英文版的奥数试题
1、In , 16 June falls on a Wednesday. On what day of the week will 16 June fall in?
2、If half of a number is 30, then three-quarters of that number is____.
3、The sum of the digits of the following product 999555
4、Three positive integers have a sum of 28. The greatest possible product that these integers can have is_____.
5、In what follows, □ and are different numbers.When 503 is divided by □ the remainder is 20.When 503 is divided by the remainder is 20.When 493 is divided by □ x the remainder is_____.
6、A lady, her brother, her son and her daughter (all related by birth) played volleyball. The worst players twin (who is one of the four players) and the best player are of opposite sex.The worst player and the best player are of the same age.Who cannot be the worst player(s)?
A) brother only
B) daughter only
C) son and daughter only
D) lady and daughter only
E) lady only
7、If you continue the given number pattern, in what row and in whatposition in that row will the number 320 be?
1 -------------- row 1
2 3 -------------- row 2
4 5 6 -------------- row 3
7 8 9 10 -------------- row 4
小升初英文版的奥数试题3
关于小升初奥数试题和答案
二年级
1.一辆公交车到A站下车5人,上车7人,到B站下车6人,上车10人,现在车上有40人,车上原来有乘客多少人?
2.13+14+15+16+17+25
三年级
1.十位数字与个位数字之差(大数减小数)等于1的两位数有多少个?
2.A、B、C、D、E五个人一起回答一道题,五个人中只有两个人答对了,所有答对的可能情况有多少种?
四年级
1.有一串数共11个,中间数最大。从中间往前数,一个比一个小2;从中间往后数,一个比一个小3。已知这些数的总和是200,那么中间数是多少?
2.在下面的算式中合适的地方填入“+”、“-”,使等式成立。
0808=1000
五年级
1.有若干名同学需要住宿,如果每间住4人,那么有10人没地方住;如果每间住6人,那么最后一间住不满。这些同学最多有多少名?
2.如图,∠1等于100度,∠2等于60度,∠3等于90度,∠4等于多少度?
六年级
1.78名同学围成一圈,从某个同学开始进行1—18报数,一圈一圈循环下去,那么有没有人同时报过5和10?为什么?
2.有20个队进行比赛,每两个队之间最多赛一场。现在已经共进行了21场比赛,那么是不是一定有一个队至少赛了3场?
答案:
二年级
1.一辆公交车到A站下车5人,上车7人,到B站下车6人,上车10人,现在车上有40人,车上原来有乘客多少人?
解答:40-10+6-7+5=34(人)
2.13+14+15+16+17+25
解答:原式=(13+17)+(14+16)+(15+25)=30+30+40=100
三年级
1.十位数字与个位数字之差(大数减小数)等于1的两位数有多少个?
解答:10、12、21、23、32、……、89、98,共17种。
2.A、B、C、D、E五个人一起回答一道题,五个人中只有两个人答对了,所有答对的可能情况有多少种?
解答:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10种。
四年级
1.有一串数共11个,中间数最大。从中间往前数,一个比一个小2;从中间往后数,一个比一个小3。已知这些数的总和是200,那么中间数是多少?
解答:(200+2+2×2+2×3+2×4+2×5+3+3×2+3×3+3×4+3×5)÷11=25
2.在下面的算式中合适的`地方填入“+”、“-”,使等式成立。
20080808=1000
解答:200+808-0-8=1000
五年级
1.有若干名同学需要住宿,如果每间住4人,那么有10人没地方住;如果每间住6人,那么最后一间住不满。这些同学最多有多少名?
解答:要想让人数最多,那么第二种情况下,最后一间住的人越少越好,即空位越多越好。最后一间至少住2人,最多空4个位置,所以房间最多是(10+4)÷(6-4)=7个,人数最多为4×7+10=38人。
2.如图,∠1等于100度,∠2等于60度,∠3等于90度,∠4等于多少度?
解答:四边形内角和是360度。∠1+∠2+∠3+∠4=180×4-360=360度,∠4=360-100-60-90=110度。
六年级
1.78名同学围成一圈,从某个同学开始进行1—18报数,一圈一圈循环下去,那么有没有人同时报过5和10?为什么?
解答:78÷18余6,且78与18的最大公约数就是6,所以每个人报的数之间的差只能是6,报5的只能报11或17,不可能报10。
2.有20个队进行比赛,每两个队之间最多赛一场。现在已经共进行了21场比赛,那么是不是一定有一个队至少赛了3场?
解答:假设每个队比赛的场数都不到3场,那么每个队最多赛2场,最多共进行2×20÷2=20场比赛,矛盾,所以一定有一个队至少赛了3场。
小升初英文版的奥数试题4
有关小升初英文奥数试题
1、Did you know? In the decimal number system (base 10) ten different digits, 0 to 9, are used to write all the numbers. In the binary number system (base 2) two different digits are used, i.e. 0 and 1.
Which one of the following numbers is not a valid number in the
octal number system (base 8)?
A) 128 B) 127 C) 126 D) 125 E) 124
2、The number of diagonals that can be drawn in a regular polygon with
twenty sides (icosagon) is_____.
3、If a and b are integers, 103=1,1527=3, and then 3796 is equal to_____.
4、Two numbers are in the ratio 2 : 3. When 4 is added to each number the ratio changes to 5 : 7.The sum of the two original numbers is____.
5、The greatest number of Mondays which can occur in 45 consecutive
days is____
6、Saul plays a video game in which he scores 4 for a hit and lost 6 for a miss. After 20 rounds his score is 30. The number of times he has missed is____.
7、Three girls A, B and C run in a 100 m race. When A finishes, B is 10 m
behind A and when B finishes C is 20 m behind B. How far in metres was C from A when A finished?(Lets assume all the athletes run at a constant speed)
8、The areas of the faces of a rectangulabox are 84 cm2 , 70 cm2and 30 cm2.The volume of the box in cm3 is____.